
the Online Anatomical Human
an online browser and annotation system for real human anatomy

Cees-Willem Hofstede
MSc-student Computer Science

Delft University of Technology

email: ceeswillem@gmail.com

Abstract
Human anatomy is complex in its nature and from the late bronze age to this date people have
been trying to understand it. Resources such as books and software exist to train students in
their knowledge of the human body. Most books focus on specific parts of the body or try to
give a general overview. Images in books present the information from a single view point, since
interaction is not possible. Several software tools have been developed to illustrate anatomy.
The aims of these tools are diverse, including education, anatomical research, surgical training
and pre-operative planning.

In this work, we introduce the Online Anatomical Human, an online anatomy browser and
annotation system that incorporates medical image data in 2D and linked 3D views. We created
a system that is available to everyone and as portable as possible. The application functions as
an educational tool where users can not only retrieve, but also add and share information. Our
main contribution is that this system is the first of its kind to offer real anatomical data in an
online environment with existing linked knowledge and the possibility to add new information.
We describe this data as real anatomical data, because it is obtained frommedical imaging data
and is not based on an idealized average anatomy.

Besides tools forexplorationof thedata, aneditor isavailable forannotations. Theseannotations
can be added to the 3D mesh directly. This information can be used to enrich the model. Since
the system runs completely inside a web browser, no installation is required and no data has to
be permanently stored on the local machine.

1 Introduction

The human anatomy has been studied for
many years. Before printed press, anatomical
knowlegde had to come from postmortem
research. One of the oldest known papers about
it, known as the Edwin Smith Papyrus dates
back to approximately 1700 BC [Feldman and
Goodrich, 1999]. The way anatomy is studied
has changed, but even today one usually relies
on books for education in anatomy. Many great
books exist, with beautiful images. Notable
examples are Abrahams et al. [2008], Gray
[2011] and Agur et al. [2012]. Although these

books cover many topics and can give deep
insight in the human anatomy, they all have one
big limitation, they are made of paper. This
means that the views depicted in the images
are as is. If you want to view a structure from
a different angle then usually you will have
to find another book in the hope it features
that angle. In addition, changes in knowledge
about the human anatomy cannot be updated.
Youwill have towait foranewreleaseof thebook.

In thisworkwepresent theOnlineAnatomical
Human, henceforth referred to as OAH. Our
software forms an online platform which can be

mailto:ceeswillem@gmail.com


used to explore real human anatomy in 3D, view
the originalmedical imaging data in 2D and enrich
the model with annotations.

The need to be able to update information
arises from two sources. First, not
everything about the human anatomy is known.
Anatomical research still frequently describes
new discoveries. Second, as mentioned by
Kinugasa et al. [2007], problems may arise when
there is no consensus on what a structure looks
like. Annotations allow for people to add what
they think is right and share these ideas, while
still being able to see other point of views on the
subject.

Smit et al. [2012] proposed a model-based
representation of heterogeneous anatomical
data known as the Unified Anatomical Human
(see figure 1). The advantage of the proposed
solutions is that it solves some of the problems
that arise with books. The software gives a
3D view linked with 2D slice viewers that are
fully interactive. Heterogeneous spatial and
non-spatial data from different sources, as well
as the complex relations between them, are
available in the model. This information can
be queried interactively in the system. We
wanted to extend the proposed solution with
an online counterpart that makes use of the
same database and is available to everyone. Our
software runs completely inside a web browser
and directly from the web, so no software needs
to be installed on the local machine. We do
not aim to have an exact copy of the original
work in terms of functionality. Instead, out tool
aims to act as a supplement to the standalone
version as an educational resource. While our tool
serves a different purpose, the human anatomy
model can still be explored in both 2D and 3D.
The user can freely interact with the model.
Types of interaction include panning, rotating
and zooming in on specific parts and hiding parts
from the view. 2D interaction consist of three
planar views: transversal, coronal and sagittal.
Each of these views update automatically when
either one is changed. This linked view is a novelty
for online tools.

Another advantage over existing online tools
is that the model is not limited to previously
entered information. Because the system uses
the same database behind the original project,
model information can be updated automatically
as new or updated model versions are added.
Users can contribute to the system themselves by

adding annotations of missing, newly discovered
or generally interesting parts. These include
landmarks, regions, line segments and contours.
In this way, the original model is extended
with information added online. While 2D
annotation is widespread, few systems provide a
straightforwardwaytodothis in3D[Bourguignon
et al., 2001]. Different types of annotations are
necessary to cover the needs of anatomists.

We introduce interaction techniques that do
not necessarily require amouse and a keyboard. A
Leap Motion1 is used to demonstrate interaction
without touching any input device. This technique
is used for panning, zooming and rotating the
camera. This allows, for example, to update the
properties of the camera with a free hand, while
the other hand is used to add annotations with a
mouse.

With this work, our contributions are the
following:

› We provide a way of crowdsourcing
anatomical knowledge by enabling users to
annotate anatomical structures in 3D via the
web.

› Our software runs completely directly from
the web eliminating the need to install
dedicated software.

› We present a different approach to
interaction techniques including the use of
a Leap Motion device.

› We present a prototype tool that is capable
of providing the user with 2D and 3D
anatomical information via a web-browser
for educational purposes.

The rest of this paper is organized as follows:
In section 2 related work and tools are discussed.
This is followed by an overview of the challenges
overcome in our method in section 3. Section 4
gives a description of design decisions and used
technologies. Section 5 gives an overview of our
presented prototype. Results are presented in
section 6. Finally, conclusions and further work
are discussed in section 7.

2 Related Work
In this section, work related to our proposed
solution is examined. First, we describe several

1https://www.leapmotion.com/

2

https://www.leapmotion.com/


Figure 1: Original Unified Anatomical Human (UAH) application [Smit et al., 2012]. This view shows a
distance query in the 3D view with its results in the bottom view. On the right the original cryosectional
slices and segmentation are shown in a linked view.

tools with a similar goal. This is followed by a
description of related literature concerning the
annotation of 3D structures. Next we shortly
discuss 3D graphics rendering in a web-browser.
The section is concluded with a overview of
literature on 3D model interaction.

2.1 Online anatomy browser tools

Web interfaces for anatomy atlasses have been
around for over ten years. For a long time these
interfaces did not work well enough in terms
of interaction speed to replace existing atlases
in books [Bradley et al., 1995]. Only recently,
with new techniques such as WebGL, full 3D
applications in the browser are made possible.

ZygoteBody2was introducedby [Blumeetal.,
2011], then under the name of Google Body. The
tool features a full overview of the human body,
male and female. The tool originally contained a
feature to add an annotation point. This single
point consisted of a position and a note. Single
annotations could be shared via a special url.
The anatomy is fixed and comes from a designed
model, not frommedical imaging data.

[Qualteretal., 2011] introducedtheBiodigital
Human3. This tool has since grown out to be the
most feature rich WebGL anatomy platforms. It
is one of the few tools that currently feature
annotations, although only of a single type.
Pinpoints can be added with a label and a

2http://www.zygotebody.com/
3https://www.biodigitalhuman.com

3

http://www.zygotebody.com/
https://www.biodigitalhuman.com


Figure 2: Internal and External labels used by Agur and Dalley [2009].

description. The complete view and setup,
including annotations, can be shared with other
users. However, region annotations or line
segments are not available, making it impossible
to give a detailed view of which exact part of the
structure is relevant to the annotation. Here
as well, the model used is not created from
real anatomical data, but is a manually modeled
artistic generalization. 2D medical images are
therefore not available.

InnerBody [2013] is ahumanbodyexploration
tool. It does not feature a 3D model. The tool
offers various anatomical systems to be explored
in detail. For each system a hierarchical list of
structures and sub-structures is shown. When a
structure is selected an interactive 2D image is
shown. Information is shown for the part where
the mouse is placed on.

Table 1 shows a comparison of features of
OAH and related applications. Our application is
the only one that supports both 2D and 3D views
based on real medical imaging data.

2.2 Annotation of 3D structures

In this section, we first take a look at traditional
annotations types, which are available in books
covering human anatomy. This is followed by
a summary of literature about annotations in
software and methods that provide the desired

functionality.
Agur and Dalley [2009] show several views of

the pelvis using two types of annotations. For
larger parts the label is shown directly on the
drawing whereas interesting points are labeled
next to the picture with a line to the point of
interest. Figure 2 shows an example of these
annotations.

Platzer et al. [2000] use similar types of
annotations with the addition of color to
distinguish between different tissue types. Line
segments are also used to indicate for example
attachment lines as show in Figure 3.

(a) (b)

Figure 3: Annotation types used by Platzer
et al. [2000]. (a) Points of interest. Colors
indicate tissue type. (b) Lines indicate attachment
locations.

4



feature the Online
Anatomical
Human

Biodigital
Human

Zygote
Body

InnerBody

Online 3 3 3 3

2D View 3 7 7 3

3D View 3 3 3 7

Medical Image Data 3 7 7 7

Linked information 3 3 7 3

Annotations 3 7a 7 7

Freely Available 3 3b 3 3

a Pinpoint e.g. landmarks are available to paying users
b The standard plan is free. Commercial plans exist offering more funcionality

Table 1: Feature comparison of related applications. The feature list is comprised of features that are
deemed desirable for an online anatomy platform.

Color is used byAttene et al. [2009] aswell, as
shown in in figure 4. In this case, color is used to
label parts in a larger model covering the entire
human body.

Figure 4: Colors are used to label different parts
of the human body [Attene et al., 2009].

A digital example of interactive painting on a
mesh directly in a web-browser, is DeathPaint4,
introduced by Slack [2014]. This technique
could be used to annotate regions on anatomical
structures. The challenge with Deathpaint was to
get accurate positions for drawing using WebGL
technology. The solution chosen was color

4http://www.cartelle.nl/toys/deathpaint/

picking. Our approach use a similar technique
that does not require pre-rendered textures, so
that it works for newmodels added to the system
without preprosessing textures.

Drawing lines on 3D surface is not
straightforward. Bonneau and Hahmann [2004]
proposed a method to draw smooth polylines
between two selected faces on a mesh. Several
methods are discussed, all of which require some
(un)projection or raycasting method. Both these
method types suffer from the same limitation.
With raycasting, the user draws a line on screen.
From this line, points on the surface are picked
using many rays through the line or using
projection as suggested by Tolba et al. [1999].
However, as figure 5 shows, this may yield
discontinuities in the line. The method Bonneau
and Hahmann propose, uses an adaption of
Dijkstra’s shortest path algorithm [Dijkstra, 1959]
to define a path between two selected faces. A
smooth curve is created using the initial shortest
path. However, when the user defines two points
on the model, the curve that is generated with
this method will not appear as a straight line.

Gorgan et al. [2007] introduced methods for
pen-based annotation in 2D and 3D. The work
is aimed at medical education. Annotations in
3D are drawn directly onto the objects surface.
Annotations transform accordingly to the object,
meaning that when the object rotates, the
annotation keep in the same place in relation
to the object. Unfortunately, the methods used
arenot explained. Also, the softwaredoesnot run
from an online source and needs to be installed

5

http://www.cartelle.nl/toys/deathpaint/


Figure 5: Defining a line on a surface with
raycasting may fail on surfaces with high
curvature, causing discontinuities. 1. The line
that was drawn on screen 2. The curved mesh
with the line projected on it in orange.

locally.
Jung et al. [2002] introduced Space Pen. This

system allows user to annotate 3D models in
a web-browser. These annotations include text
comments positioned in 3D space and drawing on
a model directly. Unfortunately, the application
requires external java plugins and runs only in
older versions of internet explorer.

2.3 3D graphics in a web-browser

In order to reduce the stress on client computers,
Blazona andMihajlovic [2004] proposedamethod
of in-server rendering. In this approach, the
rendering process is remotely performed in the
server and its resulting image is sent to the client.
This solution increases the load on the server
when many clients are present [Congote et al.,
2011]. The release of WebGL5 made rendering
complex 3D scenes within the browser feasible.
WebGL quickly gains in popularity and most of
the major browser support6 it.

2.4 3D model interaction

In most publicly available software that governs
3D model interaction, mouse and keyboard are
used as input devices. The mouse is essentially a
2Ddeviceandwhilea3Dscene is renderedona2D
screen, interaction can become counterintuitive.
Gallo et al. [2008] proposed a method for
model interaction with a WiiMote, the wireless
Nintendo R© Wii controller. Since this device can
be controlled in the air, the user is not limited

5http://www.khronos.org/webgl/
6http://webglstats.com

to a 2D plane for interaction (a table), as is the
case with a general computer mouse. In addition,
interacting on a 3Dmodel with a 3D device better
translates intuitive motion to actions on screen.

The Leap Motion, which was released in
2013 brings a new type of interaction. 3D
interaction is possible by moving your hands in
the air. Unlike with the WiiMote, you don’t
need to hold anything in your hands. Weichert
et al. [2013] concluded that the device is robust
enough to use in applications requiring a high
level of accuracy for in-the-air movement. The
average measured accuracy was 0.7 mm, while
the accuracy attainable by a human hand is 0.4
mm on average.

OAH was inspired by the research and tools
described before. However, none of the tools use
real anatomical data. Not only does OAH feature
a 3D model, also the 2D medical image data from
which was created. OAH is the first of its kind to
allow regions and lines annotation on anatomical
3Dmodels, in theweb-browser, without the need
for any external plugin. Apart from keyboard and
mouse, our application is built to support other
inputdevices suchas theLeapMotion, allowing to
interact with the model in a more intuitive way.

3 Method

In this section, we describe several methods
behind themain features of the tool. We focus on
the challenges, so not all methods are completely
described here. First we give a general overview
of types of annotations that are available. This
is followed by detailed descriptions for each
annotation type and the techniques that were
used to support them.

The following types of annotations are
available in OAH.

1. Landmark: These are single points on the
surface of an anatomical structure. This type
of annotation is used either to label an exact
point, or to sub-label a structure without a
specific region.

2. Region: Regions are usedwhen a certain part
ofa structureneeds tobeannotated,without
being precise. This can be useful when, for
example, two parts of a structure need to be
distinguishable, but the actual border is not
evident. This method uses a brush and works
well to quickly annotate larger areas.

6

http://www.khronos.org/webgl/
http://webglstats.com


3. Line/contour: This typeof annotation is used
to show lines on the surface. As figure 2
shows, lines exist in anatomy. This type of
annotation is also useful for more precise
annotations than regions. Regions do not
have clearly defined edges, whereas lines do.
Lines can be set to form a contour. In this
case the beginning and endpoint of the line
are connected as well.

The difficulty with annotations lies in the fact
that they are placed on a 3D surface. For single
points this is not a problem, as long as the point
where themarkermust be placed is in the current
view. For regions and (closed) line segments,
solutions are less trivial. For brushes we do not
just need one point, but a range of points within a
certain radius. For lines we need a strip of points
to follow the curvature of the model.

We define a (position) pointer. Our
application accepts input from different devices
besides a mouse. To keep track of the position
we define an object that stores the position of
the pointer on screen. When an input device is
used to alter the position, the object updates
accordingly. This is easily extended to other input
devices, such as the Leap Motion.

3.1 Landmarks

For landmark placement we use a raycasting
approach. The landmark position is defined by
a mouse click on the model. With a raycaster,
the point on the surface closest to the camera is
found and used. We add a small sphere at this
point in 3D space. This sphere is placed so that
the selected point is exactly in themiddle, so that
it is visible from both sides of the surface.

3.2 Regions

The objective for the brush is that the model is
colored around the point where the pointer is
on, using the diameter set in the brush options.
For example, when a brush diameter is set,
all vertices within that radius from the current
point are colored. This poses two challenges.
One is face selection, i.e., finding the selected
face on the surface of the model where the
pointer is on. We used the method described
in section 3.2.1. The second challenge is vertex
selection, i.e. toefficiently findwhichneighboring
vertices are part of the current brushed region.

We used a forward search approach described in
section 3.2.2.

3.2.1 Face selection using off-screen render

We looked at several methods to select a face in
3D space. The most used method is raycasting.
Although this method usually works quite well,
raycasting is too slow in this situation. The
raycaster loops over all faces of all models to
find the face directly under the pointer. For large
models this canbe toocomputationally expensive
to give acceptable response times. This problem
occurs sincewehave to search for vertices aswell.
Several solutions exist to improve the speed. One
that proved to work well was to use an octree7.
An octree is a spatial indexingmethod introduced
by Meagher [1982]. It can be used to speed up
spatial searches. However, the use of an octree
increased the memory usage for larger models
and the implementation cost is high.

Figure 6: (Offscreen) render of a pelvic bone
model consisting of 63602 triangles. Each face is
assigned a distinct color based on its index in the
model.

Therefore, we looked into a method that
did not require the raycaster altogether. Our
method uses offscreen rendering, similar to the
technique used by Slack [2014]. Here, a render
target is used to which the model is rendered
with a distinct color for each face. To find out
which face is currently under the cursor, all that
had to be done is to check the color of the pixel
at that position in the background render. This
color relates to the face index. Although this
technique requires an extra render pass, only a
single pixel has to be rendered extra. The biggest

7https://github.com/collinhover/threeoctree

7

https://github.com/collinhover/threeoctree


drawback of the method Slack [2014] describes,
is that it uses a predefined color texture. This
texture has to be calculated and stored as an
image beforehand. Moreover, the wrapping of
the texture on the model introduces artifacts.
Our method does not require a pre-generated
texture. We render the model in the background
with a different material, which renders a unique
color for each face in the model. The color for a
face is chosenbasedon its index in themodel. This
index is then converted to a hexadecimal value
which is used to set the RGB value. For example,
take the face with index 81288. This index is
0x1FC0 in base16. This translates to the RGB
triplet R = 0, G = 31, B = 192, which is used to set
the face color. Since this color is defined in RGB
space, it allows for models with a maximum of
2563 = 16,777,216 faces. Figure 6 shows a model
as it is rendered to the render target.

Whenweneedtoknowwhich face thepointer
is currently over, we render the scene with the
distinctly colored model to the rendertarget.
Sincewe need only to knowwhat is directly under
the pointer, we render only a single pixel on that
point. The color of that pixel is then translated to
base10, which gives us the index for the current
face. This method provides the required speed,
and uses less memory than an octree.

3.2.2 Forward search vertex selection

In order to find all vertices within the diameter
range of the brush, we created a forward search
approach. With this method, there is no need to
loop over all vertices of the model each time the
brush is used.

Our method uses the Three.js WebGL
Javascript framework. One problem that needed
to be solved first, was that models defined in
this framework contain a list of faces with each
vertex belonging to that face, but not the other
way around. This was solved using a topology
implementation. The topology provides linked
lists between all combinations of face, vertex,
and edge pairs. The topology is described in
section 4.

Algorithm 1 shows a simplified version of the
process to retrieve all vertices that need coloring.
As input we have the center of the current face
and the diameter of the brush. Using a forward
search approach, all directly connected vertices

88128 is just perfect. No really, it is: http://mathworld.
wolfram.com/PerfectNumber.html

Algorithm 1: Forward search algorithm
for vertex selection used with region
annotations.

Input: Selected face, d = diameter of brush
Data:
Q = queue of faces to check
F = list of visited faces
V = list of vertices to be colored
Result: List of vertices to be colored

1 add selected face to queue;
2 while queue not empty do
3 f ← first face f in queue;
4 foreach vertex v in f do
5 if position of v within d from starting

point then
6 V ← v;
7 foreach face not in F belonging

to v do
8 Q← f ;
9 end

10 end
11 end
12 end
13 returnV

within that radius are found and returned.

3.3 Lines and contours

Line segments can be drawn in two ways. In the
first mode, points are continuously added while
the pointer moves over the model. In the second
method, only abegin- andendpoint is defined and
a straight line is drawn between these to points.

The method we used is described in
algorithm 2. The algorithm looks for the shortest
path between two point over the edges in the
model that intersect a plane, described by the
two points and the camera’s position. A visual
explanation of this algorithm is given in figure 7.
Figure 8 shows how this method works for high
curvature meshes. It does not suffer from the
problematic discontinuities described in section
2

Because our algorithm returns only vertices
within the radius, that are connected to other
vertices within the radius, no discontinuities
occur. When two parts of the model are close
together, ourbrushingmethoddoesnotoverflow
into the disconnected region of the model.

8

http://mathworld.wolfram.com/PerfectNumber.html
http://mathworld.wolfram.com/PerfectNumber.html


Figure 7: Visual representation of algorithm 2.
The orange line indicates the line resulting from
our algorithm. The lighter blue face indicates the
starting face. Blue faces are visited during the
algorithm and each of their edges are checked.
Green lines indicate edges that intersect the
plane. Red lines indicate edges that do not
intersect the plane and serve as a border for
the search.

Figure 8: Defining a line on a surface using our
approach works even for high curvature meshes.
1. The line that was drawn on screen. 2. The line
following the curvature of the mesh.

4 Implementation
In this section we describe some of the
techniquesand libraries thatwereusedduringthe
development of OAH. Table 2 gives an overview
of these techniques.

WebGL is used to render the 3D views.
This is a relatively new technique to utilize
the power of the graphics card inside a web
browser environment. The initial specification
was released2011. WebGL is gaining in popularity
and support quickly. Except for Internet Explorer,
all major browsers support WebGL, even on
mobile devices.

The project relies on Three.js9, a javascript

9http://www.threejs.org

Algorithm 2: Drawing a straight line
between two points A and B on curvature
of mesh.

Input: point A, point B
Data:
Q = queue of edges to search
E = linked list of edges intersecting plane

1 create plane P between A, B and camera
position;

2 Q← each edge e around A that intersect
crossing plane;

3 while Q not empty and Path from A to B not
found do

4 e = first edge remove from Q;
5 find closest face f to plane from edge e

in;
6 foreach edge e in f and not in E do
7 if e intersects with plane then
8 E← e;
9 Q← e;

10 end
11 end
12 end
13 P = shortest path from A to B from

backtracing on E;
14 construct path by taking intersections of

edges and plane;

framework that simplifies the way of working
with WebGL. A challenge is to keep the system as
lightweight as possible, so that it runs not only on
high-end machines, but on tablet computers as
well. This means that the used models must not
become too large in filesize, while maintaining
enough detail to be anatomically correct. We
converted the models to a JSON format which
can be imported in Three.js directly10. These
files are considerably smaller than the wavefront
OBJ files the model was originally stored in. For
example, a mesh with 31787 faces which had an
OBJ filesize of 5.6MB was converted to a JSON
format file with a size of 3.5MB. This is even
further decreased when the model is simplified
using decimation techniques before conversion.

In Three.js, topological data for models is not
directly available. For each face there is a list
of which vertices it has, but there is not an easy
way to get each face a vertex is connected to, or
find vertices forming edges. We used the work of

10https://github.com/mrdoob/three.js/wiki/
JSON-Model-format-3

9

http://www.threejs.org
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3


technique description

WebGL 3D inside web-browser

Three.js WebGL framework

Tween.js animation

Javascript Main programming language

jQuery (+UI) Javascript framework

Require.js Javascript module loader

Leap.js Leap Motion library

threeleapcontrols Three.js leap motion library

PHP File and database queries

MongoDB Database

HTML5 Markup

CSS3 Application styling

Compass CSS Authoring

Table 2: Summation of the techniques used in the
Online Anatomical Human.

Stemkoski [2013]. This tool creates topological
data for any given geometry. Although it creates
some redundant data, traversing over amesh and
finding paths becomes easier.

To translate movement detected by
the Leap Motion to a usable value,
Leap.js11 and threeleapcontrols12 were used.
Threeleapcontrols converts input from the Leap
motion to camera transformations. Leap.js is
required to get information from the device. We
used this also to define how hand and finger
movement control the pointer.

jQuery and jQuery UI are used for easy
manipulation of the document structure. jQuery
UI offers several widgets that were used to
create the menus. jQuery UI also contains a
widgetfactory to build custom stateful widgets.
We utilized this to define custom widgets for
the 2D sliceviewers. The 2D sliceviewers can be
displayed within the 3D view as sliceplanes, in
order to show their spatial relation to the model.
There is always one point in 3D where these
slices intersect. Whenever a change is made in
one of the sliceviewers or in sliceplanes, this
point location updates. This update scheme is
shown in figure 9. Each view is updated when
this point changes. This happens, when in one of
the views the position is altered. DOM13 events
are used to let each view know when an update

11http://js.leapmotion.com/
12https://github.com/torstensprenger/

threeleapcontrols
13http://www.w3.org/DOM/

is required. This leverages the optimized DOM
update structure used in web-browsers.

Figure 9: Bodypoint location update diagram.

In the original Unified Anatomical Human
application by Smit et al. [2012], literature
was linked to the anatomical structures. This
information is stored in a MongoDB database.
PHP is used to communicate with this database.

During the development of OAH we created
several proof of concept applications to test
different approaches and identify difficulties. A
selection of these prototypes can be found in
appendix ??.

5 System description
This section describes the final product and
design of OAH. First we describe the data that
OAHworks with. This is followed by a description
aboutmodel interaction. The section is concluded
with a description of the annotation system.

5.1 Data

OAH uses the same models that are used in
The Unified Anatomical human by Smit et al.
[2012]. In order to create these models the
Visible Korean Dataset, developed at the Ajou
University in Suwon [Park et al., 2005, 2006, 2008]
was obtained. Detailed segmentations were
made from the Visible Korean Female dataset.
This dataset was chosen because of its high

10

http://js.leapmotion.com/
https://github.com/torstensprenger/threeleapcontrols
https://github.com/torstensprenger/threeleapcontrols
http://www.w3.org/DOM/


Figure 10: Main window of OAH after selection. The selected structure is highlighted in the structure list
on the left. In the center, the 3Dmodel is shown. The selected os coxae structure is shown in full opacity.
Other structures are shown with a lower opacity.

(a) (b)

Figure 11: 3Dmodelwith andwithout selection. (a) No structure selected (b)Os Coxae structure selected.

quality. Due to the high resolution digital images
of 4,368 x 2,912 pixels and a cross-sectional
interval of 0.2 mm, this dataset is considered
to be qualitatively one of the best Visible Human
Datasets available. Based on this dataset manual
segmentations have been made.

The final model consist of structures listed
in table 3. When all structures are loaded, the
total model consists of 666992 faces and 323280
vertices. For the 2D sliceviewers we have 910

transversal + 134 coronal and 246 sagittal images.
Because the amount of images is too high to load
inaweb-basedenvironment,weaddedan internal
setting to limit the number of images loaded. This
could later be automated based on, for example,
the connection speed of the user.

11



Figure 12: Structure list panel. The muscular
(expanded) and vascular (collapsed) structures
are hidden in the 3D view. The ureter from the
urinary system is selected.

5.2 Model interaction

Themodel interactions view is shown in figure 10.
Each part is described in detail in the rest of this
subsection.

5.2.1 3D View

The 3D view shows a 3D model of all currently
loaded anatomical structures. Here we describe
the components of this view.

Interaction The user can interact with the
camera in different ways. The application was
built to support various input methods including
mouse, keyboardandLeapMotion. ALeapMotion
allows to interact with with just hand(s) and/or
finger(s) in the air.

Structures can be selected. This can be
done by clicking on a structure in the 3D view
directly, or from the list of structures. Doing so
makes the other structures transparent so that
the selected structure becomes visible from all
angles. This allows the user to focus on the
selected structure while the other structures
remain visible as context. Figure 11 shows an
example of this.

System Structure

digestive mesorectum

rectal mucosa

rectal wall

rectum lumen

muscular bulbospongiosus muscle

coccygeal muscle

iliac muscle

iliopsoas muscle

levator ani muscle

obturator internus muscle

piriformis muscle

psoas major muscle

nervous nerve

reproductive corpus cavernosum

fallopian tube

ovarium

uterus

vagina lumen

vaginal wall

skeletal coccygeal disc

lumbar disc

lumbar spine

os coxae

sacral disc

urinary bladder

ureter

vascular artery

vein

Table 3: Anatomical systems and their structures
which are currently available in the Online
Anatomical Human.

Toolbar The toolbar shows buttons to control
the 3D view. Based on the information that
is available for the model or current selected
structure extra information is shown. For
example, a literature button appears if literature
is linked to the selection. When clicked on, this
button opens a dialog with all literature for the
selected structure.

The menu also includes options store and
retrieve views. Whenever a certain camera-angle
is interesting for the user, this view can be stored.
When this view needs to be recalled later, the
view can be selected. The camera then gets
translated from its current view to the selected

12



(a) (b) (c) (d)

Figure 13: Sliceviewer for the transversal direction. (a) Crosectional only. (b) Labels only. (c)
Cryosectional with labels as semi-transparent overlay. (d) Cryosectional in black and white with labels as
semi-transparent overlay.

one, via a tweening animation.

5.2.2 List of anatomical structures

The structure list in Figure 12 shoes all available
anatomical structures in a hierarchical list. Each
level can be hidden or shown in the 3D view.
At the lowest level are the seperate anatomical
structures. These can be selected from this list as
well.

5.2.3 2D View

2D medical imaging views are common for
practitioners in a course of anatomy, whether
they are based on CT/MRI scans, atlases
or cryosectional slices. The switch to 3D
reconstruction is, therefore, not easy. Formedical
students, it is important to learn the relation
between 2D and 3D images. It is challenging
to mentally reconstruct 3D from 2D. 2D images
provide extra information pertaining to a 3D
model. because of this and the fact that surgery
and patients are in fact 3D, people are trained to
read both.

Because of this, the 2D cryosectional images
that were used to segment the model, as well
as the segmentation labels, are available in
transversal, coronal and sagittal directions. For
each of these three directions, a ‘sliceviewer’ is
available. These viewers are available as 2D, in
a sidepanel, and in 3D to relate them to the
model. A sliceviewer can show different types of
combinations of the cryosectional slices and the
labels. Figure 13 shows the four combinations
that are currently available. Each view is linked
to the others. This means that when one view is
updated, theothersupdateaccordingly. Figure14
shows a 3D representation of how the slices
denote a point in 3D space.

Figure 14: Sliceplanes in all three directions. The
current point is where the slices intersect. Slices
are updated accordingly when this point changes
and vice versa.

There are two ways to update to update the
views:

1. Each 2D sliceviewer shows a cross marker.
The axis of this marker show the relation to
the other directions. Whenever this point is
relocated on the view, the represented point
in 3D spacemoves accordingly, and the other
views update based on that.

2. The third axis for each view is represented by
the stack of images in the view. The user can
scroll with mouse over the view to update
this axis, hence scrolling through the list of
images for the view.

5.3 Annotations

In this subsection we show how the annotation
system in OAH can be used to annotate
anatomical structures. First we describe the
annotation view in general. This is followed by a
description for each of the annotation types.

13



Figure 15: Part of the Annatation window. An annotated ‘‘Os Coxae’’ structure is shown with landmark
and region annotations. The list of annotations on the left shows the color of the annotation.

When an anatomical structure is selected
the annotation for that structure is shown.
Annotationscanbeadded inaviewwhereonly the
selected structure is visible. The annotation view
shown in figure 15 replaces the list of structures
with a list of annotations for the selected model.
Fromhere, annotations canbehiddenor selected.
Above the list a menu is displayed with buttons
to create new annotations.

5.3.1 Landmark annotations

In related tools that feature annotations, the
landmark is usually the only available type of
annotation. A landmark is simply a point in 3D
space on the surface of a structure. The user can
select this point in the 3D view and add a label
and a description.

5.3.2 Region annotations

We provide the ability to brush a region directly
on the 3D model. Using this method the user
can define regions of interest. The brush has the
following properties:

size
Setting a different size accommodate to
quickly brush in large regions of the model,
or smaller parts for more precise features.
The size size of the brush is related to the
size in pixels on the screen.

color
When more brushed regions are defined, it
helps to have a distinct color for each.

5.3.3 Line and contour annotations

When a straight line or contour with strongly
defined edges needs to be annotated, a brush
may not always work well, since it is imprecise
and it uses the models vertices to define what
is part of a brushed area. Therefore, it is also
possible to define annotations that lay on top of
the model. Line/Contour annotations have the
following properties:

color
Similar to brush color

closed
When this is selected and more than two

14



points are added, the first and last point are
connected automatically.

Line segments can be drawn on the model
by clicking and dragging. Another way is to click
one point and then shift+click a second to draw
a straight line between the two points, provided
a straight line following the curvature exists for
the current view. If selected, the endpoints of
the line are connected by a straight line.

Each of the annotations described can be
created using a mouse, a Leap Motion device,
or a combination of both. When only a mouse
is used, the user clicks (and drags) to define an
annotation. When a Leap Motion is connected,
the user can rotate and zoom the camera with
one hand, while the other hand is used to control
the mouse. Lastly, by using just the Leap Motion
with two hands, annotations can bemade as well.
Rotation and zoom works as described before.
Panning can be done by using two fully opened
hands (as a fan). To represent a click the user
opens the left hand and points with one finger of
the right hand to the screen. When the left hand
is closed, the pointer will act the same as if the
leftmouse buttonwas down. This can be inverted
to support left handed interaction

6 Results

In this section we shortly discuss results of some
of the methods that were described in this work.

Figure 16 shows a result of our technique to
draw straight lines on a model. When two points
are defined to draw a line, the result is a line
that appears perfectly straight from the point of
view from theuser. When viewed fromadifferent
angle however, the line does follow the curvature
of the mesh.

The technique we described for region
annotations prevents other parts of the structure
thatmaybe close, but disconnected, fromgetting
colored. When a user brushes over the surface,
only vertices within the radius of the brush, that
are directly connected to a known face within the
brush are getting colored. Figure 17 shows aa
example of this.

In thealgorithmthatweuse to findvertices to
color for region annotations, color picking is used
as opposed to raycasting. For larger models with
more than 100,000 faces, we noticed a severe
performance drop using the raycaster. On a

Figure 17: When a region annotation is made,
only connected vertices within the diagonal get
colored.

system with an Intel Core i7 2677M CPU and Intel
HDGraphics 3000GPU, the frameratewould drop
from 60 fps to 20-40 fps. With the color picking
technique described in section 3.2.1 this is not
the case. Although this approach is not entirely
independent of the mesh complexity, retrieval of
the selected point is instantaneous.

7 Conclusions and FutureWork

In this work the Online Anatomical Human
has been presented as an online browser and
annotation system for real human anatomy. It
makes 2D and 3D anatomical data based on
medical imaging available to everyone with an
Internet connection. Our system runs completely
inside a web-browser and directly from the web.
There is no need to install any plugins or other
software.

Users of the system can annotate the model
directly in 3D by adding landmark, region and/or
line/contour annotations.

A Leap Motion device can be used to interact
with the model in a more intuitive way than with
just a mouse and keyboard. The system is built
in such a way that other input devices can be
supported as well.

The system currently functions as a proof
of concept application. All techniques described

15



(a) (b)

Figure 16: Drawing straight lines based on current view on curvature of a model. (a) Directly after
drawing, the line appears to be perfectly straight. (b) Rotation shows how the line follows the curvature
of the model.

in this paper are implemented in the prototype
application. However, a full scaleuser registration
and storage system is not yet in place.

At the time of writing, only structures for a
female pelvis are available. Other structure must
be added to form a complete model of a human.

While regions annotations and contour
annotations are available, the software would
benefit of offering a combination of both. This
means that when a contour is drawn, this contour
is filled, where this fill follows the curvature of
the model.

Currently, the annotations are shown on the
model and in a side panel. The link between the
two is the color of the annotation which is shown
in the panel as well. An improvement would be
to show the labels for each annotation in the 3D
view. In order to have readability and prevent
clutter, these labels should be placed in such a
way, that they do not overlap other labels or
occlude the view with the model.

When many users annotate the same
anatomical substructure, a generalized view that
combines these annotations in a single view
would be necessary. Uncertainty visualization
then becomes important. This could show how
much annotations for the same structure differ.
Fromthis, a unit of confidence for thegeneralized
view could be calculated. Substructures with a
high confidence level are probably close to the
real data. This information can be used to update
the initial model used by the system.

Our software was developed with an
educational goal in mind. Currently it serves well
as a replacement for anatomy atlases in books. A
quizzing system could be added to accommodate

this goal even further. One such system could
ask the user to denote a certain anatomical
structure. Depending on how many structures
were correctly selected, a score would be given.

the Online Anatomical Human is the first
online anatomy browser and annotation system
of its kind. OAH combines real medical data
in 2D and 3D. It features a rich annotation
system to add knowledge to the system. The
fact that it supports other input methods as a
LeapMotion devicemakes it ready for the future.
This, togetherwith the improvementsmentioned
before, shows that our system is well underway
to become a worthy competitor for currently
available anatomical atlases.

8 Acknowledgments

The author wishes to thank Noeska Smit, Anna
Vilanova and Elmar Eisemann for their guidance
and helpful insights during this project, and the
Leiden University Medical Center for providing
the data.

References

Peter H. Abrahams, Johann M. Boon, and
Jonathan Spratt. McMinn’s clinical atlas of
humananatomy. ElsevierHealthSciences, 2008.

Anne M. R. Agur, Arthur F. Dalley, and John C. B.
Grant. Grant’s atlas of anatomy. Wolters Kluwer
Health, 2012.

16



AnneM.R. Agur and Arthur F. Dalley. Grant’s atlas
of anatomy. LippincottWilliams&Wilkins, 2009.

Marco Attene, Francesco Robbiano, Michela
Spagnuolo, and Bianca Falcidieno.
Characterization of 3d shape parts for
semantic annotation. Computer-Aided Design,
41(10):756--763, 2009.

Bojan Blazona and ŽeljkaMihajlovic. Visualization
service based on web services. Journal of
Computing and Information Technology, 15(4):
339--345, 2004.

Arthur Blume, Won Chun, David Kogan, Vangelis
Kokkevis, Nico Weber, Rachel Weinstein
Petterson, and Roni Zeiger. Google body:
3d human anatomy in the browser. In ACM
SIGGRAPH 2011 Talks, page 19. ACM, 2011.

Georges-Pierre Bonneau and Stefanie Hahmann.
Smooth polylines on polygon meshes. In
Geometric modeling for scientific visualization,
pages 69--84. Springer, 2004.

David Bourguignon, Marie-Paule Cani, and
George Drettakis. Drawing for illustration
and annotation in 3d. In Computer Graphics
Forum, volume20, pages114--123.WileyOnline
Library, 2001.

Scott W. Bradley, Cornelius Rosse, and James F.
Brinkley. Web-based access to an online atlas
of anatomy: the Digital Anatomist Common
Gateway Interface. Proceedings of the Annual
Symposium on Computer Application in Medical
Care, pages 512--516, 1995. ISSN 0195-4210.

John Congote, Alvaro Segura, Luis Kabongo,
Aitor Moreno, Jorge Posada, and Oscar Ruiz.
Interactivevisualizationofvolumetricdatawith
WebGL in real-time. In Proceedings of the 16th
International Conference on 3DWeb Technology
- Web3D ’11, page 137, New York, New York,
USA, June 2011. ACM Press.

Edsger W. Dijkstra. A note on two problems
in connexion with graphs. Numerische
mathematik, 1(1):269--271, 1959.

Robert P. Feldman and James T. Goodrich. The
edwin smith surgical papyrus. Child’s Nervous
System, 15(6-7):281--284, 1999.

Luigi Gallo, Giuseppe De Pietro, and Ivana Marra.
3d interaction with volumetric medical data:
experiencing the wiimote. In Proceedings of

the 1st international conference on Ambient
media and systems, page 14. ICST (Institute
for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008.

Dorian Gorgan, Teodor Stefanut, and Bogdan
Gavrea. Pen Based Graphical Annotation in
Medical Education. Twentieth IEEE International
Symposium on Computer-BasedMedical Systems
(CBMS’07), pages 681--686, June 2007.
ISSN 1063-7125. doi: 10.1109/CBMS.2007.
84. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4262727.

Spalding Gray. Gray’s anatomy. Random House
Digital, Inc., 2011.

InnerBody. Innerbody.com, July 2013. URL http:
//www.innerbody.com/.

Thomas Jung,MarkDGross, and Ellen Yi-LuenDo.
Annotating and sketching on 3dwebmodels. In
Proceedings of the 7th international conference
on Intelligent user interfaces, pages 95--102.
ACM, 2002.

Y. Kinugasa, G. Murakami, D. Suzuki, and
K. Sugihara. Histological identificationof fascial
structures posterolateral to the rectum. British
journal of surgery, 94(5):620--626, 2007.

Donald Meagher. Geometric modeling using
octree encoding. Computer graphics and image
processing, 19(2):129--147, 1982.

Jin Seo Park, Min Suk Chung, Sung Bae
Hwang, Yong Sook Lee, Dong-Hwan Har, and
Hyung Seon Park. Visible korean human:
improved serially sectioned images of the
entire body. Medical Imaging, IEEE Transactions
on, 24(3):352--360, 2005.

Jin Seo Park, Min Suk Chung, Sung Bae Hwang,
Byeong-Seok Shin, and Hyung Seon Park.
Visible korean human: its techniques and
applications. Clinical Anatomy, 19(3):216--224,
2006.

Jin Seo Park, Yong-Wook Jung, Jun Won Lee,
Dong Sun Shin, Min Suk Chung, Martin Riemer,
and Heinz Handels. Generating useful images
formedical applications from the visible korean
human. Computer methods and programs in
biomedicine, 92(3):257--266, 2008.

Werner Platzer, Gerhard Spitzer, Helga Fritsch,
Wolfgang Kühnel, Helmut Leonhardt, Werner

17

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4262727
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4262727
http://www.innerbody.com/
http://www.innerbody.com/


Kahle, and Michael Frotscher. Sesam atlas van
de anatomie. HB Uitg., 2000.

John Qualter, Frank Sculli, Aaron Oliker, Zachary
Napier, Sabrina Lee, Julio Garcia, Sally Frenkel,
Victoria Harnik, and Marc Triola. The biodigital
human: a web-based 3d platform for medical
visualization and education. Studies in health
technology and informatics, 173:359--361, 2011.

Johnny Slack. Cartelle deathpaint study, February
2014. URL http://www.cartelle.nl/toys/
deathpaint/study/.

Noeska N. Smit, Anne C. Kraima, Daniel
Jansma, Marco C. Deruiter, and Charl P.
Botha. The Unified Anatomical Human (
Beta ): Model-based Representation of
Heterogeneous Anatomical Data. pages 1--20,
2012.

Lee Stemkoski. Three.js topology, July
2013. URL https://github.com/stemkoski/
stemkoski.github.com/blob/master/Three.js/
js/topology.js.

OsamaTolba, JulieDorsey, andLeonardMcMillan.
Sketching with projective 2d strokes. In
Proceedings of the 12th annual ACM symposium
on User interface software and technology,
pages 149--157. ACM, 1999.

Frank Weichert, Daniel Bachmann, Bartholomäus
Rudak, and Denis Fisseler. Analysis of the
accuracy and robustness of the leap motion
controller. Sensors (Basel, Switzerland), 13(5):
6380, 2013.

18

http://www.cartelle.nl/toys/deathpaint/study/
http://www.cartelle.nl/toys/deathpaint/study/
https://github.com/stemkoski/stemkoski.github.com/blob/master/Three.js/js/topology.js
https://github.com/stemkoski/stemkoski.github.com/blob/master/Three.js/js/topology.js
https://github.com/stemkoski/stemkoski.github.com/blob/master/Three.js/js/topology.js

	Introduction
	Related Work
	Online anatomy browser tools
	Annotation of 3D structures
	3D graphics in a web-browser
	3D model interaction

	Method
	Landmarks
	Regions
	Face selection using off-screen render
	Forward search vertex selection

	Lines and contours

	Implementation
	System description
	Data
	Model interaction
	3D View
	List of anatomical structures
	2D View

	Annotations
	Landmark annotations
	Region annotations
	Line and contour annotations


	Results
	Conclusions and Future Work
	Acknowledgments
	References

