
Eurographics Workshop on Visual Computing for Biomedicine (2008)
Charl Botha and Gordon Kindlmann and Wiro Niessen and Bernhard Preim (Editors)

Computational Steering

for Patient-Specific Implant Planning in Orthopedics

Christian Dick1, Joachim Georgii1, Rainer Burgkart2, and Rüdiger Westermann1

1Computer Graphics and Visualization Group, Technische Universität München, Germany
2 Klinik u. Poliklinik für Orthopädie u. Sportorthopädie am Klinikum Rechts der Isar, Technische Universität München, Germany

Abstract

Fast and reliable methods for predicting and monitoring in-vivo bone strength are of great importance for hip joint

replacement. To avoid adaptive remodeling with cortical thinning and increased porosity of the bone due to stress

shielding, in a preoperative planning process the optimal implant design, size, and position has to be determined.

This process involves interactive implant positioning within the bone as well as simulation and visualization of the

stress within bone and implant due to exerting forces. In this paper, we present a prototype of such a visual analysis

tool, which, to our best knowledge, provides the first computational steering environment for optimal implant

selection and positioning. This prototype considers patient-specific biomechanical properties of the bone to select

the optimal implant design, size, and position according to the prediction of individual load transfer from the

implant to the bone. We have developed a fast and stable multigrid finite-element solver for hexahedral elements,

which enables interactive simulation of the stress distribution within the bone and the implant. By utilizing a

real-time GPU-method to detect elements that are covered by the moving implant, we can automatically generate

computational models from patient-specific CT scans in real-time, and we can instantly feed these models into the

simulation process. Hardware-accelerated volume ray-casting, which is extended by a new method to accurately

visualize sub-hexahedron implant boundaries, provides a new quality of orthopedic surgery planning.

Categories and Subject Descriptors (according to ACM CCS): G.1.8 [Numerical Analysis]: Partial Differential Equa-
tions - Finite Element Methods, Multigrid and Multilevel Methods I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - Physically Based Modeling I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Raytracing

1. Introduction and Related Work

Methods for predicting and monitoring in-vivo bone strength
are of great importance in clinical applications such as frac-
ture fixation or endoprostheses for hip joint replacement.
Such procedures call for highly efficient and reliable anal-
ysis tools, which allow during a preoperative design loop to
find the optimal design, size, and position of an implant by
matching its mechanical properties with those of the individ-
ual bone. The clinical relevance of such a planning approach
is due to the well known fact that an essential determinant
factor for the long term stability of an implant is a physi-
ological load transmission to the adjacent bone stock. For
instance, an optimized femoral stem should provide bone
stress patterns that closely replicate the preoperative phys-
iological stress state in order to prevent stress shielding with

the consecutive effects of osteopenia, fracture and aseptic
loosening [OH78, SV02]. The main objective is thus to sim-
ulate the mechanical response of patient-specific bone to a
load that is applied to the implant, and to find of all possible
implant shapes and positions the one that results in the most
natural stress distribution. The challenge in developing such
an analysis tool results from the complexity of simulating
the stress due to exerting forces in a physically correct way,
and from the difficulty of considering a moving implant with
specific mechanical properties in such a simulation. Further-
more, such a tool is highly demanding on advanced visu-
alization technology because it requires simultaneous visu-
alization of surface and dynamic volume structures at rates
that allow for interactive monitoring and analysis.

Due to the aforementioned challenges, so far no surgical

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

planning system recruits—to our knowledge—patient spe-
cific 3D data according to the individual mechanical prop-
erties of the involved bone and implant. In the majority of
clinical centers worldwide the preoperative planning for the
selection of an implant, e.g., an endoprosthesis for total hip
joint replacement, is performed on an X-ray of the patient’s
hip joint. Therefore, in preparation for the surgical inter-
vention, the surgeon is only able to select on a 2D X-ray
the approximately best fitting size of an endoprosthesis us-
ing simple, transparent template sheets with the outlines of
the implants. The drawbacks and limitations of such a two-
dimensional approach are obvious, especially because rota-
tional misalignment is not controlled and the position of the
endoprosthesis is only revisable in the coronar plane.

To overcome these problems new approaches were pur-
sued in the last years to use 3D information from patient spe-
cific CT data [HEPP01,BBL97,VCT∗04]. With these virtual
3D planning systems the surgeon can visualize the position
of the implant components three-dimensionally in the bone
or can plan a custom-made implant for a specific bony con-
tour. But these systems provide only geometrical data to the
surgeon and he has to decide about the best implant design,
size, and position according to his subjective medical ex-
perience. However, most important would be the additional
knowledge of the patient-specific biomechanical properties
of the affected bone to select the optimal implant according
to the prediction of individual load transfer from the implant
to the bone. This information is still missing in current 3D
planning systems.

Figure 1: Screenshots of the simulation environment: Left:

Semi-transparent rendering of the femur and the implant

(green color) as well as the volume rendering of the femur’s

interior structures support the positioning of the implant.

Right: The load on the femur is indicated by the yellow ar-

row and sphere, and the resulting stresses in the volume are

visualized with red color.

In this paper, we present a first prototypical 3D planning
system for hip joint replacement that addresses the afore-
mentioned requirements (see Figure 1). Following previous
work in orthopedics [BOM∗07, TSH∗07], we use 3D finite

element (FE) analysis to predict loads in the proximal fe-
mur consisting of cortical stiff tissue and trabecular cellu-
lar spongy tissue. The physical model underlying our ap-
proach is based on linear elasticity and thus mimics the be-
havior of the bone at the macro-level during normal move-
ments [KGW∗94]. Mechanical properties of all femur re-
gions are derived directly from the Hounsfield units of the
cells in a measured CT scan as proposed in [KLS94, KF03].

In particular, we have developed a h-version FE method
(h-FEM), which assigns material properties on a per-element
basis in an orthogonal hexahedral 3D grid. At first glance
such an approach seems to have substantial accuracy limita-
tions compared to high-order p-FEM methods, which have
recently shown good correlation between simulation results
and real-world experiments [YTM07]. Such methods can
model the variations of material properties within each ele-
ment using high-order polynomials, thus reducing the num-
ber of elements to be used and allowing for the accurate rep-
resentation of curved structure boundaries. However, we will
show in this paper that accuracy limitations of our method
can be avoided by using a highly optimized h-FEM method
including a multigrid solver for improved convergence. Not
only does such a method allow for interactive load simula-
tions using reasonably sized finite element models, but we
will also demonstrate that it can be used to simulate bone
and implant loads on a desktop PC system at the resolution
of the CT scan, i.e., one hexahedral finite element per CT
voxel, and at simulation rates of less than one minute.

To further improve the proposed system towards a compu-
tational steering environment, we have integrated 3D visual-
ization and interaction mechanisms. Specifically, we enable
the user to interactively place the implant in the bone and we
provide immediate visual feedback of simulated stresses via
texture-based volume ray-casting. To the best of our knowl-
edge, this is the first time that changes in bone stress due
to variations in implant position and exerting external forces
can be monitored and analyzed in quasi-real-time. This has
been made possible by a fully automatic approach for the
generation of a computational model based on the initial CT
scan. A fast voxelization technique is employed to determine
all CT voxels covered by the implant, which then get as-
signed the material properties of this implant. The FE anal-
ysis considers these voxels and simulates their interaction
with the surrounding bone voxels under load. As the vox-
elization process is performed entirely on the GPU, it does
not impose any performance constraints, and it allows inte-
grating the determined sub-volume into the rendering pro-
cess.

The remainder of this paper is organized as follows: In the
following section, we give an overview of our prototypical
3D planning system, including a description of the different
components used as well as their interplay in the current ap-
plication. Next, we briefly outline the FE method we use, and
we describe the novel extensions we have developed to make

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

this method applicable for 3D planning of hip joint replace-
ments. The following section addresses visualization issues,
and it demonstrates the different functionalities we have in-
tegrated. We conclude the paper with a detailed analysis of
all components of the 3D planning system, and we outline a
number of issues that will be addressed in the near future.

2. System Overview

Figure 2 illustrates the different components of the 3D plan-
ning system for hip joint replacement. Components col-
ored white indicate preprocesses, which are performed once
before interactive implant placement and load monitoring
starts. Components colored black indicate processes that are
performed on the CPU and the GPU during runtime. In par-
ticular, while the simulation engine is entirely implemented
on the CPU and sends a simulated scalar stress field to the
GPU for rendering, the voxelization of the implant is per-
formed on the GPU, which sends a binary solid voxel model
of the implant in the current position to the CPU.

Creation of

FE model

Implant

Update

Multigrid

Solver

Stress

Visualization
Voxelization

GPU

CPU

Segmentation

CT Scanner

Acquisition

Figure 2: Overview of the proposed surgery support system.

Our 3D planning system operates on a voxel model of the
bone, which is obtained from a high-resolution CT scan. The
axial scan was performed on a Siemens Sensation Cardiac 64
with 1.0 mm slice thickness and 0.74 mm pixel size. Sam-
ples are given on a 256×256×512 lattice. In a preprocess,
the bone is segmented from the CT data, and dependent on
the Hounsfield unit h, for each segmented voxel the Young’s
modulus E (i.e., the elastic material parameter) is assigned
according to [KLS94, KF03] as:

E(h) =

33900
(

8.2106 · 10−4h + 0.057663
)2.20

h ≤ 320

10200
(

8.2106 · 10−4h + 0.057663
)2.01

h ≥ 660

5307
(

8.2106 · 10−4h + 0.057663
)

+ 469 320 < h < 660

[MPa] .

For the Poisson’s ratio ν a value of 0.3 is used. The removal
of the trabecular head region is simulated by masking all
voxels belonging to this region.

Starting with the segmented voxel model at the initial CT
resolution, a hierarchical octree representation is constructed
in bottom-up order. Properties of voxels at coarser resolution
levels are averages of the properties of all voxels at the next
finer level contained in this voxel. Once the octree hierarchy
is built, at each level a FE model is constructed, by creating
a hexahedral finite element for each voxel containing at least
one segmented CT voxel.

Once the hierarchy has been constructed, the user first se-
lects the resolution level at which to perform the simulation.
Then, the user interactively navigates the implant to the de-
sired position in the bone. Whenever the implant is moved,
GPU voxelization of the implant geometry is performed to
determine those CT voxels covered by this geometry. The
indices of these voxels are transferred to the simulation en-
gine, which assigns the material properties of the implant to
these voxels, recomputes the material properties of the re-
spective finite elements, and updates the simulation matri-
ces accordingly. The simulation engine then computes per-
element stresses in the bone, updates a 3D texture containing
the entire bone with these values, and transfers this texture
to the GPU. On the GPU, an integrated view of the 3D stress
distribution, the 3D CT scan of the bone, as well as the im-
plant geometry is generated. Specifically, to allow for a pre-
cise analysis of the stress distribution, we perform volume
ray-casting at sub-element accuracy if the FE model does
not represent the bone at the finest resolution.

3. Simulation

In this section, we describe the physical model and the nu-
merical machinery used to simulate the stress distribution in
the interior of the proximal femur. According to the widely
accepted assumption of linear elastic response of the bone
under normal load, our model is based on linear elastic-
ity using heterogeneous material properties described by the
Young’s modulus E. We also assume the material to be
isotropic, which is a common abstraction from the real bone
behavior due to the difficulty in identifying the anisotropic
material parameters.

One central aspect of our computational steering approach
is the possibility to obtain immediate visual feedback of in-
duced loads while the surgeon positions the implant in the
simulation environment. Therefore, we provide a novel ap-
proach to handle a moving implant in the numerical simula-
tion. This approach is described in Section 3.3.

3.1. Linear Elasticity Theory

In static elasticity theory, the deformation of a volu-
metric object is described by a displacement field u(x),
u : R3 →R

3, which maps the reference configuration Ω to
the deformed configuration {x + u(x) | x ∈ Ω}. Driven by
external forces f , a deformed solid is governed by the well-
known equation from static elasticity theory

Ku = f , (1)

where K is known as the stiffness matrix, u consists of the
displacement vectors of all vertices, and f consists of the
force vectors applied to these vertices. The stiffness matrix
K is assembled from the so-called element stiffness matrices
Ke, which are obtained by applying the principle of virtual
work [Bat02] to one specific element. These matrices can be

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

computed as Ke =
R

Ωe BTDBdx, where B is the strain matrix
and D is the material law [Bat02]. Typically, every element
in a finite element discretization has only a very small num-
ber of neighbors, and thus the resulting stiffness matrix is
very sparse.

3.2. Hexahedral Elements

To calculate the element matrices, the displacements are ex-
pressed in a basis of shape functions Φ as

u(x) = Φ(x)u
e
,

where ue = (uT
0 , . . . ,uT

7)T contains the single node displace-
ments of each element. To account for the grid structure
given by the initial CT scan, in the current work we are using
hexahedral elements with tri-linear nodal basis functions:

Ni(x1,x2,x3) = c
i
0 + c

i
1x1 + c

i
2x2 + c

i
3x3 +

+c
i
4x1x2 + c

i
5x1x3 + c

i
6x2x3 + c

i
7x1x2x3.

To determine the coefficients ci
j,0 ≤ i, j < 8 of the shape

functions, a system of linear equations is built from the in-
terpolation conditions of the hexahedron’s vertices v j:

Ni(v j) =

{

1 i = j

0 i 6= j
.

3.3. Implant Simulation

One possible approach for simulating the interaction be-
tween an implant and the surrounding bone is to a) remove
from the bone voxel model those voxels representing the ma-
terial that would have been drilled away by the surgeon, b)
build a new FE model from this voxel model, and c) simu-
late the interaction of the FE model with a separate model of
the implant. However, this approach requires rebuilding the
FE model whenever the implant is moved, including the re-
computation of the structure of the system matrices. As these
are operations that cannot be performed at interactive rates
for reasonably sized data sets, we have developed a differ-
ent approach which is based on a voxelization of the implant
with respect to the initial CT voxel grid (see Section 4 for a
detailed description of the voxelization algorithm).

By means of this voxelization, we obtain a classification
of the voxels in the CT scan into bone voxels and implant
voxels, i.e., voxels that are covered by the implant. After as-
signing the implant material properties to the implant voxels,
the FE model hierarchy is rebuilt as described in Section 2.
It is worth noting that in our approach the structures (i.e.,
the positions of the potential non-zero entries) of the simula-
tion system matrices remain unchanged, because neither are
hexahedral cells removed nor added to the simulation.

Furthermore, instead of modeling the contact between the
bone and the implant explicitly, as a reasonable approxima-
tion for the contact of an object fixed in the bone, our method
simulates a non-slip boundary between both objects. At the

downside, the resolution of this boundary is determined by
the resolution of the regular hexahedral grid. Even though
this drawback is reduced because we assign an average stiff-
ness value to finite elements that contain both implant and
bone voxels, it is clear that at coarser resolution levels the
simulation cannot resolve this boundary adequately.

To achieve a fast update of stiffness values in the FE
model, we store a copy of each hexahedron’s element ma-
trix. Fortunately, since element matrices are translational in-
variant and all hexahedral elements have exactly the same
size, we only have to store one element matrix Ke. This ma-
trix is precomputed with a fixed elastic modulus E0. Due to
the linearity of the material law, the element matrix of a par-
ticular hexahedron can then be obtained by scaling Ke by the
stiffness value of this element relative to E0.

At runtime, we reassemble the stiffness matrix K once the
implant is moved. Reassembling is greatly accelerated by
storing for each hexahedral element a list of pointers to those
entries in the matrix data structure that represent this ele-
ment, allowing to quickly access the required entries within
the assembling process. As the structure of the stiffness ma-
trix is not changing during simulation, these lists can be
precomputed. Without these references, the implementation
would have to determine the respective positions by using
row/column indices. Since we use a row-compressed sparse
matrix format, such an index lookup requires a binary search
on the entries of the respective row, which has a logarith-
mic runtime complexity in the number of non-zero entries
in this row. This complexity can be reduced to O(1), if the
respective entries are determined once in a preprocess and
then stored as references within each hexahedral element.
To keep the number of references as small as possible, we
employ a block-row-compressed format in which each non-
zero entry is a dense 3×3 matrix. Since the element matrix
Ke consists of 3× 3 blocks (according to the element ver-
tices), this format accounts for the fact that units that have to
be written into the global matrix are 3×3 blocks.

To reassemble the global stiffness matrix K, for every hex-
ahedral element that is affected by the implant movement, all
blocks of the reference element matrix Ke are first scaled ac-
cording to the current element’s elastic modulus and they are
then written into the stiffness matrix.

3.4. Solution Method

Iterative methods are the most popular approaches for solv-
ing systems of linear equations as they arise in the current
application, because they effectively allow for the exploita-
tion of the systems’ sparsity. Numerical multigrid solvers
[Hac85, BHM00], in particular, are known to be among the
fastest methods for solving elliptic partial differential equa-
tions of the form described above, as they scale linearly in
the number of supporting vertices. In geometric multigrid
schemes, relaxation methods like Gauss-Seidel are typically

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

used to effectively damp high-frequency errors on a fine res-
olution grid, with the remaining low-frequency errors being
solved for on a coarser grid. Recursive application of this ba-
sic idea to each consecutive system in the hierarchy of grid
levels leads to a multigrid V-cycle.

Building upon previous work in the field [GW06], we
have implemented an implicit multigrid solver which is well
suited for the simulation of heterogeneous linear materials
exhibiting a wide range of stiffness values. The multigrid
solver internally requires to construct matrices on the coarser
grids, which are used in the V-cycles. These matrices are
built by means of sparse matrix products involving the re-
spective interpolation and restriction operators derived from
the geometric grid hierarchy. We use a data structure that is
especially designed for the efficient computation of sparse
matrix products [Geo08], as they occur when the implant
is moved and the matrices on the coarser grids have to be
recomputed, too. The stream-like layout of this data struc-
ture allows one to perform these operations in a very cache-
efficient way. By reformulating the problem into the simul-
taneous processing of a sequential data and control stream,
cache miss penalties are significantly reduced.

3.5. Stress Calculation

Once the displacement field u is computed according to
Equation 1, we can determine the internal stress of the bone.
Here we should note that computed displacements are typi-
cally so small, that these displacements do not result in any
perceivable change of the bone’s shape, and they are thus
not considered in the visualization process. To compute the
internal stress, we utilize the element stress matrices

S =
1
V

Z

Ωe
DB dx.

Here, V =
R

Ω 1dx is the volume of the element, D is the
material law, and B is the element strain matrix. By applying
the element displacement field ue to this matrix, an averaged
stress tensor σ is derived for each element (note that σ stores
the six entries of the symmetric tensor in a linearized form):

σ = Su
e
.

To visualize the internal stress, we calculate for each el-
ement and corresponding tensor the so-called von Mises
stress norm [Bat02]:

σMises =

√

√

√

√3
6

∑
k=4

σ2
k
+

3
2

3

∑
k=1

(σk − σ̄)2 with σ̄ =
1
3

3

∑
k=1

σk.

This norm gives us a scalar value for each hexahedral ele-
ment. These values are stored in a 3D texture that is trans-
ferred to the GPU, where a volume ray-caster is used to vi-
sualize the 3D stress distribution.

4. GPU-Based Voxelization

In our computational steering approach, the implant is mod-
eled by adapting the stiffness values of those voxels that are
covered by the implant. By using a GPU-based voxelization
method, and thus by exploiting the rasterization and paral-
lel processing capabilities available on recent GPUs, we can
accurately determine these voxels on a per-frame basis. Fur-
thermore, as the resulting implant voxel model is stored in a
3D texture in GPU memory, it can directly be employed in
the rendering process to provide immediate visual feedback
while the surgeon is moving the implant inside the bone.

For GPU-based voxelization of solid objects several al-
gorithms have been presented in the past [KPT99, FL00].
The algorithm showing best performance has recently been
proposed by Eisemann and Décoret [ED08]. It performs the
voxelization of a closed polygonal surface in a single ren-
dering pass, by encoding the voxelization along the columns
of the 3D voxel grid in large bit vectors. These vectors
can be built directly in the framebuffer hardware using bit-
wise XOR blending. Because bitwise blending operations
are only available in OpenGL, we propose an only slightly
slower approach to GPU-based voxelization, which is suited
for Direct3D 10 and, at the same time, allows us to efficiently
pack the resulting voxelization into a compressed 3D texture
representation.

Our voxelization method is specifically designed for the
current application, in that it performs the implant voxeliza-
tion in only two rendering passes. Multipass voxelization ap-
proaches, in contrast, require the implant model to be ren-
dered several times, and would therefore result in a signif-
icant loss in performance due to the geometric complexity
of this model. Specifically, our method employs the sten-
cil routed k-buffer proposed by Myers and Bavoil [MB07],
which allows capturing of multiple fragments per texel in a
single rendering pass. When writing to a multisampled tex-
ture while multisample antialiasing is disabled, an incoming
fragment is spread to all sub-samples of the respective texel,
but the stencil is tested individually for each sub-sample. At
the beginning, the stencil buffer is initialized with the val-
ues 2,3,4, . . . ,9 for the eight sub-samples of each texel. The
stencil test is set to “passing if equal to 2”, and the stencil
fail and pass operation is set to “decrementing”. Depth test-
ing is disabled. With respect to a specific texel, for the first
incoming fragment the stencil test passes exactly for the first
sub-sample, and thus the fragment is written into this sub-
sample. After execution of the stencil operation, the result-
ing stencil values are 1,2,3, . . . ,8. For the second incoming
fragment the stencil test thus passes exactly for the second
sub-sample. In this way, the incoming fragments for a texel
are successively routed to different sub-samples, i.e., the ith

fragment is stored in the ith sub-sample. This functionality
allows us to capture multiple fragments per texel in a single
rendering pass.

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

Our voxelization method uses two rendering passes. In the
first pass, the implant mesh is rendered into the k-buffer to
obtain its depth layers. In the second pass, the depth infor-
mation is used to build a 3D binary volume representing the
voxelization of the implant.

In the first rendering pass, we render the implant’s sur-
face mesh into the k-buffer to capture the depth layers of the
implant. The only attribute being associated with the frag-
ments is the world space depth, thus the k-buffer consists
of a single component floating point texture. Current graph-
ics hardware supports up to eight sub-samples per texel, and
thus allows capturing up to eight depth layers in a single ren-
dering pass—to voxelize objects with higher depth complex-
ity further rendering passes would be required [MB07]. We
use an orthographic projection with a view frustum match-
ing the previously determined bounding box, and we choose
a view port that aligns the texels in the k-buffer with the bone
voxel grid. Front/back face culling and depth testing is dis-
abled. By rendering the implant’s mesh, each texel captures
the depth values of the entry and exit points of an imaginary
ray through the implant.

In the second pass, we build the 3D binary volume
representing the implant. This volume is stored in a four
component unsigned integer 3D texture (R32G32B32A32),
with each voxel being encoded into one bit. Thus, 128
voxel slices are stored in one 3D texture slice. By adding
the SV_RenderTargetArrayIndex semantic to the geome-
try shader output declaration, which enables the geometry
shader to specify the respective target slice within the 3D
texture, the entire volume can be created in a single render-
ing pass.

The bit patterns representing the voxelization are created
in the fragment shader. By using up to 8 render targets and
thus accessing 8 texture slices, the fragment shader can out-
put a vector of up to 1024 voxels at once. First, the k-buffer
entry corresponding to the respective ray is read and the
depth values are sorted in ascending order. Each consecu-
tive pair of depth values then represents an entry and an
exit point into and from the implant. If zentry,zexit ∈ [0,1]
denote the depth values, the entry and exit voxel indices

kentry,kexit are determined by kentry =
⌈

zentry ·d − 1
2

⌉

and

kexit =
⌊

zexit ·d − 1
2

⌋

, with d denoting the depth (number of

slices) of the voxel volume. The corresponding voxel block
between the entry and the exit voxel is created by adding
∑

kexit
i=kentry

2i = 2kexit+1 −2kentry to the bit pattern. Note that due
to the triangle rasterization rules and due to rounding in the
computation of kentry and kexit, a voxel is created iff the voxel
center is covered by the implant.

Finally, the 3D binary volume can directly be used on the
GPU for visualization purposes. Furthermore, it is down-
loaded from GPU memory into main memory, where it is
used to update material properties in the FE model as de-
scribed in Section 3.3.

5. Visualization

For the rendering of the virtual simulation environment and
visualization of the simulation results we use GPU-based
semi-transparent rendering of surface meshes and volume
ray-casting. These techniques enable us to simultaneously
render the simulation objects as well as the simulation re-
sults and thus to show the results in their respective context,
without limiting perception due to occlusions. The bone and
implant meshes are rendered as semi-transparent surfaces.
To render opaque and semi-transparent geometry as well as
the volumetric von Mises stress scalar field in the correct
visibility order, we use a multi-pass approach, which again
utilizes the stencil-routed k-buffer already in use in the vox-
elization process.

5.1. Rendering

First, we render all opaque geometry into the frame buffer
with enabled depth testing. The content of the depth buffer is
later used during ray-casting to correctly handle occlusions
of semi-transparent geometry and the ray-cast volume by
fully opaque objects. Then, we render all semi-transparent
geometry into an off-screen k-buffer, with depth testing as
well as front/back face culling being disabled. By means of
the k-buffer we can capture for each pixel up to eight incom-
ing fragments, independently of the rendering order of the
geometry. In our current implementation, we store with each
fragment its depth value and its surface normal—needed for
diffuse lighting—in camera space as well as an object id,
which is later used to access a small GPU lookup table stor-
ing the material colors of the respective object. Since these
values are encoded into 2× 32 bits, we choose a two com-
ponent unsigned integer texture format (R32G32) for the
k-buffer.

We then use a full-screen rendering pass to ray-cast
the volume as well as to simultaneously render the semi-
transparent geometry. Our ray-casting approach is based on
the technique proposed by Krüger and Westermann [KW03].
For each pixel, we first determine the corresponding ray’s
entry and exit point into and from the volume by two tex-
ture lookups. These two textures have been computed in two
previous rendering passes. Furthermore, we fetch the pixel’s
k-buffer entry, i.e., the fragments of the semi-transparent ge-
ometry for that pixel, and sort them with respect to ascending
camera depth values. We also fetch the pixel’s depth from
the depth buffer and back-project the depth value into cam-
era space. The depth is used to handle occlusions by fully
opaque objects.

If a ray does not intersect the volume, which is indicated
by a special value in the entry point texture, we blend the
k-buffer fragments lying in front of the opaque geometry
front-to-back, and we write the resulting color into the frame
buffer using alpha blending. Otherwise, we sample the vol-
ume equidistantly along the ray and simultaneously accu-

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

mulate the respective color contributions by using front-to-
back blending. The semi-transparent geometry is incorpo-
rated into the ray-casting process by blending a fragment as
soon as the depth of the next sampling position is larger than
the depth of the fragment. If the ray hits opaque geometry, it
is terminated. The accumulated color is finally written into
the frame buffer using alpha blending.

Due to the FE element discretization of the bone, the von
Mises stress field slightly sticks out from the bone surface.
To achieve a more appealing visualization of the von Mises
stress, we therefore clip its rendering at the bone surface, i.e.,
the von Mises stress volume is only sampled when the sam-
pling position is lying in the interior of the bone mesh. This
is determined by maintaining a flag during casting, which is
toggled whenever a bone surface fragment is blended.

5.2. Sub-Element Stress Visualization

Figure 3: Stress visualization using per-element stress (left)

and sub-element stress (middle) for a FE model resolution

of 83 CT voxels/hexahedron. For comparison, we also show

the stress computed on the initial CT resolution (right).

In this subsection, we describe a novel method to visual-
ize the 3D stress distribution at sub-element accuracy with
respect to the FE simulation grid. In Section 3.5, we have
described how to compute an average stress tensor for a hex-
ahedral element. If we look closer at the underlying theory,
we see that, because we have a linear material law, the stress
scales lineary with the elastic modulus E. Consequently, we
can also compute the stress for an arbitrary elastic modulus
first, and then scale the result by the specific elastic modulus
of the element.

From this observation, we can immediately derive a
method to visualize the stress tensor field on a per-voxel ba-
sis rather than on a per-hexahedron basis. All we have to do
at a particular sample point along a ray is to scale the ele-
ment’s stress according to the elastic modulus of the current
CT voxel. As a result, the stress field corresponds much bet-
ter to the given implant position in the visualization. It is
clear that at the highest resolution simulation level, which
matches the resolution of the CT scan, this improvement
does not have to be used.

Figure 3 demonstrates the effectiveness of the approach
(see Figure 5 for a close-up view). First, we show the stress
distribution as it was simulated on a low resolution grid
with constant stress tensor per hexahedron. Next, we show
a visualization of the same distribution at sub-element accu-
racy. Finally, we show the result obtained by using the FE
model at CT resolution. As can be seen, the visualization at
sub-element accuracy already resembles the high-resolution
stress distribution very closely, but it takes considerably less
time for the simulation. In addition, the performance of vol-
ume ray-casting only slows down marginally. Though we
now have to adapt the sampling distance along the rays to
the CT resolution, at every sample it only requires one ad-
ditional texture look-up into the CT voxel model to obtain
the respective stiffness value as well as one additional scalar
multiplication.

6. Results and Discussion

In this section, we give a detailed analysis of the perfor-
mance and accuracy of our simulation support system. All
benchmarks were run on a standard desktop PC with an In-
tel Core2 Quad Q6600 2.4 GHz processor, 8 GB of RAM,
and an NVIDIA GeForce 8800GTX graphics card with
768 MB of video memory. The view port resolution was set
to 1280×1024.

Figure 4 shows the simulation of a real world scenario in
our virtual 3D planning system (see Figure 6 for a close-up
view). The segmented femur is derived from a clinical CT
scan of the patient. In the figure, we demonstrate both the
natural stress distribution in the femur as well as the impact
of a specific implant once it is inserted into the femur. From
image to image, the resolution of the FE model is doubled.
Even for the coarsest resolution, the stress distribution with-
out the implant is already close to what is known from ex-
periments on real bone structures. However, the resolution is
not fine enough to properly represent the implant. The right
image shows the simulation performed on the resolution of
the initial CT scan, with the stress in the implant exhibiting
very fine details due to the trabecular structures within the
femur. Since these trabeculae are tangential to the implant,
the forces of the implant are directly fed into the trabecu-
lae, resulting in high stress in these fibers. Note that these
accurate results were obtained within less than one minute.

CT Voxels/Hexahedron 83 43 23 13

Hexahedra 2,257 14,277 88,783 520,416
Vertices 3,280 18,020 115,076 782,420

Voxelization+Download 49 ms 49 ms 49 ms 49 ms
Update 95 ms 335 ms 2,038 ms 13,168 ms
Solving (# V-cycles) 18 ms (2) 113 ms (2) 3.63 s (10) 30.7 s (10)

Simulation Total 162 ms
(6.17 rps)

497 ms
(2.01 rps)

5,720 ms 43,977 ms

Rendering Frame Rate 73 fps 68 fps 65 fps 63 fps

Table 1: Timing statistics of the surgery support system.

Table 1 shows the performance of our simulation support
system at different FE model resolutions. The first two rows

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

83 CT voxels/hexahedron 43 CT voxels/hexahedron 23 CT voxels/hexahedron 13 CT voxels/hexahedron
2,257 hexahedra 14,277 hexahedra 88,783 hexahedra 520,416 hexahedra

Figure 4: Visualization of the (per-element) stress distribution inside the bone at different FE model resolutions, without and

with the implant. Note that the principal stress distribution can already be deduced from the coarsest resolution, while at the

highest resolution, the trabecular structures of the femur (right) are visible.

list the number of hexahedral elements as well as the number
of vertices in the respective FE model. The next three rows
give the time for a single run of the simulation, split into the
time for the voxelization of the implant (including the down-
load of the constructed voxel model), the time for the update
of the stiffness matrix and the multigrid matrix hierarchy, as
well as the time for the solution process to obtain a displace-
ment field u and to calculate the per-element stresses. The
following row contains the total time of a simulation run, as
well as for the interactive FE model resolutions (83 and 43

CT voxels/hexahedron) the number of simulation runs per
second (rps). For the finer FE model resolutions (23 and 13

CT voxels/hexahedron), the simulation is not updated on-
the-fly, but only on demand of the user. The last row shows
the number of frames per second for the rendering. Note that
the frame rate is decoupled from the simulation update rate,
since we use two separate threads for the rendering and the
simulation, thus enabling a smooth interaction with the sys-
tem.

The time for the implant voxelization and the download
of the voxel model is constant for all FE model resolutions,
since the voxelization is always performed at the resolution
of the initial CT voxel model. Note that the voxelization time
in Table 1 is the CPU time, i.e., the time from issuing the re-
spective draw call to the availability of the voxel model in
main memory. The CPU time is much larger than the needed
GPU time, since CPU and GPU have to synchronize, i.e.,
the CPU is stalled until the GPU has executed all pending
commands in the command buffer. Using the voxelization
algorithm proposed in Section 4, the GPU time is less than
1 ms for an implant consisting of 30,000 triangles and a reso-
lution of 1283 voxels, thus the GPU-based voxelization does
not conflict with maintaining interactive frame rates for the
visualization.

The time for updating the stiffness matrix and the multi-
grid matrix hierarchy as well as the time for solving the lin-
ear system scale roughly linear with the number of vertices.
The aprupt rise of the time needed for solving between the

FE model resolutions 43 and 23 CT voxels/hexahedron re-
sults from using as many V-cycles as are required for con-
vergence in case of on-demand simulation, but only using 2
V-cycles in case of on-the-fly simulation, where convergence
is achieved over multiple simulation runs.

With simulation update rates of 2-6 rps for the 83 and 43

CT voxels/hexahedron resolutions, our system enables a vi-
sual steering approach. Even for the finest resolution with
more than half a million finite elements, the simulation runs
in less that one minute on a standard desktop PC. With re-
spect to the visualization, the frame rate slightly decreases
from coarser to finer resolutions, since a higher resolution of
the von Mises stress scalar volume requires a smaller step
size during ray-casting, but even for the finest resolution in-
teractive frame rates of more than 60 fps can be maintained.

7. Conclusion and Future Work

In this paper, we have presented a prototype of a compu-
tational steering environment for optimal implant selection
and positioning. As our results show, by using advanced
numerical schemes for FE-based model analysis, interac-
tive yet highly accurate simulations are possible today on
desktop PC systems. Combined with efficient visualization
schemes including surface and volume rendering, a powerful
visual computing tool for orthopedics has been developed.
In the future, we will validate the results of our simulation
with respect to real-world experiments. Furthermore, we will
develop more sophisticated methods for the visualization of
the directional stress tensor field and we will integrate hap-
tic feedback devices into our system. Further directions of
research are the integration of an anisotropic material law
into the simulation as well as the explicit modeling of the
contact zone between implant and bone.

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

Acknowledgments

The first author is funded by the International Graduate
School of Science and Engineering (IGSSE) of Technische
Universität München. We thank our cooperation partners at
the Chair for Computation in Engineering of Technische
Universität München for fruitful discussions.

References

[Bat02] BATHE K.-J.: Finite Element Procedures. Prentice Hall,
2002.

[BBL97] BÖRNER M., BAUER A., LAHMER A.: Computer-
guided robot-assisted surgery in hip endoprostheses. Orthopäde

26, 3 (1997), 251–257.

[BHM00] BRIGGS W. L., HENSON V. E., MCCORMICK S. F.:
A Multigrid Tutorial, 2 ed. SIAM, 2000.

[BOM∗07] BESSHO M., OHNISHI I., MATSUYAMA J., MAT-
SUMOTO T., IMAI K., NAKAMURA K.: Prediction of strength
and strain of the proximal femur by a CT-based finite element
method. Journal of Biomechanics 40, 8 (2007), 1745–1753.

[ED08] EISEMANN E., DÉCORET X.: Single-pass GPU solid
voxelization for real-time applications. In Proc. Graphics Inter-

face (2008), pp. 73–80.

[FL00] FANG S., LIAO D.: Fast CSG voxelization by frame
buffer pixel mapping. In Proc. IEEE Symposium on Volume Vi-

sualization (2000), pp. 43–48.

[Geo08] GEORGII J.: Real-Time Simulation and Visualization

of Deformable Objects. PhD thesis, Technische Universität
München, 2008. http://mediatum2.ub.tum.de/node?id=627732.

[GW06] GEORGII J., WESTERMANN R.: A multigrid frame-
work for real-time simulation of deformable bodies. Computer

& Graphics 30, 3 (2006), 408–415.

[Hac85] HACKBUSCH W.: Multi-Grid Methods and Applications.
Springer Series in Computational Mathematics. Springer, 1985.

[HEPP01] HANDELS H., EHRHARDT J., PLÖTZ W., PÖPPL

S. J.: Simulation of hip operations and design of custom-made
endoprostheses using virtual reality techniques. Methods of In-

formation in Medicine 40, 2 (2001), 74–77.

[KF03] KEYAK J. H., FALKINSTEIN Y.: Comparison of in situ
and in vitro CT scan-based finite element model predictions
of proximal femoral fracture load. Medical Engineering and

Physics 25, 9 (2003), 781–787.

[KGW∗94] KEAVENY T. M., GUO E., WACHTEL E. F.,
MCMAHON T. A., HAYES W. C.: Trabecular bone exhibits
fully linear elastic behavior and yields at low strains. Journal

of Biomechanics 27, 9 (1994), 1127–1136.

[KLS94] KEYAK J. H., LEE I. Y., SKINNER H. B.: Correlations
between orthogonal mechanical properties and density of trabec-
ular bone: Use of different densitometric measures. Journal of

Biomedical Materials Research 28, 11 (1994), 1329–1336.

[KPT99] KARABASSI E.-A., PAPAIOANNOU G., THEOHARIS

T.: A fast depth-buffer-based voxelization algorithm. Journal

of Graphics Tools 4, 4 (1999), 5–10.

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. In Proc. IEEE Visu-

alization (2003), pp. 287–292.

[MB07] MYERS K., BAVOIL L.: Stencil routed A-buffer. In Proc.

ACM SIGGRAPH Technical Sketch Program (2007), p. 21.

[OH78] OH I., HARRIS W. H.: Proximal strain distribution in
the loaded femur. Journal of Bone and Joint Surgery, American

Volume 60, 1 (1978), 75–85.

[SV02] SIMÕES J. A., VAZ M. A.: The influence on strain shield-
ing of material stiffness of press-fit femoral components. Journal

of Engineering in Medicine 216, 5 (2002), 341–346.

[TSH∗07] TADDEI F., SCHILEO E., HELGASON B., CRISTO-
FOLINI L., VICECONTI M.: The material mapping strategy influ-
ences the accuracy of CT-based finite element models of bones:
An evaluation against experimental measurements. Medical En-

gineering and Physics 29, 9 (2007), 973–979.

[VCT∗04] VICECONTI M., CHIARINI A., TESTI D., TADDEI F.,
BORDINI B., TRAINA F., TONI A.: New aspects and approaches
in pre-operative planning of hip reconstruction: a computer sim-
ulation. Langenbeck’s Archives of Surgery 389, 5 (2004), 400–
404.

[YTM07] YOSIBASH Z., TRABELSI N., MILGROM C.: Reliable
simulations of the human proximal femur by high-order finite
element analysis validated by experimental observations. Journal

of Biomechanics 40, 16 (2007), 3688–3699.

c© The Eurographics Association 2008.

C. Dick, J. Georgii, R. Burgkart & R. Westermann / Computational Steering for Patient-Specific Implant Planning in Orthopedics

Figure 5: Stress visualization using per-element stress (left) and sub-element stress (middle) for a FE model resolution of

83 CT voxels/hexahedron. For comparison, we also show the stress computed on the initial CT resolution (right).

43 CT voxels/hexahedron 13 CT voxels/hexahedron
14,277 hexahedra 520,416 hexahedra

Figure 6: Visualization of the (per-element) stress distribution at FE model resolutions of 43 and 13 CT voxels/hexahedron,

without and with the implant.

Figure 7: Visualization of the (per-element) stress for various load directions using a FE model resolution of 43 CT vox-

els/hexahedron.

c© The Eurographics Association 2008.

