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Abstract

In many cases x-ray images are the only basis for surgery
planning. Nevertheless it is desirable to draw conclusions
about the 3D-anatomy of the patient from such data. This
work presents a method to reconstruct 3D shapes from few
digital x-ray images on the basis of 3D-statistical shape
models. At the core of this method lies an algorithm which
optimizes a similarity measure assessing the difference be-
tween projections of the shape model and the x-ray images.
Based on theoretical and experimental observations we pro-
pose to measure the distance between the silhouettes of the
object in the projections. The method is tested on 23 syn-
thetically generated x-rays from CT data sets of the the geo-
metrically as well as topologically complex shape of the
pelvic bone.

1. Motivation

X-ray images still play a crucial role in diagnosis and
surgery or therapy planning. Accurate computer-aided pre-
operative planning, however, requires the knowledge of the
3D-geometry of the anatomy. The problem addressed in
this work is how to reconstruct the a-priori unknown 3D-
geometry of objects from 2D-projection images.

One of the most prominent applications is the treatment
of degenerative joint diseases by artificial hip joint replace-
ment. A large number of hip prostheses are implanted per
year. Due to the aging of the population a strong rise in
this number is expected for the future. While it is known
that the loads on the hip joint play a crucial role for the
long-term function and successful performance of artificial
joints, there exists no reliable data about expected joint
loads for surgical planning. Computer-assisted planning
shall help to further improve the treatment in order to as-
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Figure 1. 3D-reconstruction from x-ray

sure an individual and optimal biomechanical reconstruc-
tion of the hip. To this end, arising forces and loads before
and after the intervention shall be computed via validated
biomechanical models. Most commonly, the basis for such
simulations are x-ray images. While substantial data for the
adjustment of biomechanical model parameters can be ex-
tracted from coronal x-ray images [3], a more accurate anal-
ysis of the loads requires the knowledge of the 3D-geometry
of the bone and muscles.

2. Previous Work

A large portion of the work concerning 2D/3D-
registration (cf. van de Kraats et al. [10] and references
therein) is based on the assumption that there exists pre-
operative 3D-data of the patient, which shall be registered
to data acquired intra- or post-operatively. This work how-
ever addresses the problem of reconstructing 3D-objects
from 2D-data, where no such reference is available. Among
many differently parameterized deformable surface models
(see Montagnat et al. [5] for an overview), models that in-
corporate a-priori knowledge about typical shape variations
occurring in the object to be reconstructed seem to be most
suitable for this task due to their robustness. Miscellaneous
works build upon this idea:
Fleute et al. [2] use a 3D-statistical shape model of the dis-
tal femur for registration with x-ray images from a C-arm.
They minimize the distances between the contours of the



model surface and the contours formed by a discrete num-
ber of projections rays within the x-ray acquisition setting
using the ICP algorithm. Benameur et al. [1] build and use a
3D-statistical shape model of vertebrae for registration and
segmentation of x-ray images. The registration consists of
a minimization of an image edge potential, which measures
the distance of the projected contours to the contours in the
x-ray images. Yang et al. [8] generate a hybrid shape model
for the reconstruction of femurs from x-ray data. The cor-
relation between simulated thickness images of the shape
model and the x-ray images serves as the similarity mea-
sure for the optimization.
In contrast to the previous work we propose to measure the
distance between the model and the data based on their sil-
houttes. We validate our method using synthetically gener-
ated x-ray images from CT data of the pelvic bone.

3. Methods

3.1. Statistical Shape Model

The shape model used in this work is generated from a
set of individual training shapes (triangulated surfaces). The
main challenge lies in the correct identification of anatom-
ically corresponding points on each training surface. The
method described by Lamecker et al. [4] was adopted to
generate the shape model of the pelvis, but a variety of other
approaches exists, too. In this method each training shape is
decomposed into a number of corresponding regions inter-
actively. Each of these regions is then mapped consistently
to a common base domain under the constraint of minimiz-
ing metric distortion. Concatenating these parameteriza-
tions directly yields the desired correspondence map. As
a result of this process, all training shapes vi (i = 1, . . . , n)
can be represented in a common vector space of dimension
3m, with m the number of sample points used to discretize
the shapes (vertices of the surfaces). Principal component
analysis (PCA) on this set of vectors provides a compact
representation of the variability within the training set, re-
sulting in a bilinear model:

S(b, T ) = T

(
v +

n∑
k=1

bkpk

)

where v =
∑

vi/n is the average shape, pk the eigen-
modes of the covariance matrix C =

∑
(vi − v)(vi −

v)T /n. The shape weights b and the linear transformation
T consitute the degrees of freedom of the model.

3.2. Thickness of the Shape Model

For a given camera calibration K (location and orienta-
tion of the x-ray source w.r.t. the image acquisition planes)

Figure 2. top: thickness images (projected
shape model), bottom: simulated x-ray images

and a given instance of the shape model S(b, T ), a thick-
ness image of the shape model in the image acquisition
plane is computed by computing the propagation length of
simulated rays through the volume enclosed by the shape
model (Fig. 2, top). This can efficiently be accomplished
using graphics hardware acceleration.

3.3. Simulated X-Ray

In order to illustrate the reasoning for the choice of the
similarity measure in this work, synthetic x-ray images are
generated from CT-data sets using the volume rendering
technique. Such artificial data possesses a high degree of
realism [6] (Fig. 2, bottom). Besides, the same CT-data sets
were used to extract the training set for the statistical shape
model, and will later be used for evaluating the method.
Hence we are able to directly compare projection data of
the shape model with calibrated x-ray images.

3.4. Silhouette Extraction

From both the thickness and the simulated x-ray images
accentuated contours are extracted using a Canny [8] edge
detector (Fig. 3). Finally, the silhouette is extracted from the
projection images. The silhouette can automatically com-
puted from the thickness images: it is its zero level-set,
i.e. it separates pixels with thickness > 0 from pixels with
thickness = 0. However, the silhouette must be determined
interactively in the x-ray images: wrong edges are discarded
or missing edges are added to the silhouette (demonstrated
in Fig. 4 on real x-ray images). The final contours are ras-
terized as 2D-images.



Figure 3. Canny edge maps. top row: thick-
ness, bottom row: simulated x-ray images

3.5. Choice of Similarity Measure

The desired 3D-reconstruction is given by the solution
of the optimization problem x∗ = arg minx D(x) where
D(x) with x = (b, T,K) measures the dissimilarity be-
tween a projected shape model instance and a set of x-ray
images.

Approach 1: The most obvious and fully automatic
choice for D would be an intensity correlation between the
thickness and the x-ray image (cf. Tang et al. [8]), e.g. by
sum of squared differences or mutual information. How-
ever, our experiments showed unsatisfactory results on the
pelvic data. The approach produces mismatches on the in-
side of the pelvis since it does not take into account inho-
mogeneities there (Fig. 2). Another cause for problems is
the additional structure that is present on the outside in the
x-ray data but not in the thickness image.

Approach 2: The second most obvious choice consists
in measuring the distance between the edge-maps (cf. Be-

Figure 4. Left: Canny edge detection in x-ray,
Right: silhouette in the x-ray.

nameur et al. [1]). This approach is almost automatic, as it
involves adjusting some parameters of the Canny-filter. Let

d(x, s′) = min
x′∈s′

‖x − x′‖

be the distance between a point x in the set of contour s of
the thickness image and the set of contours s′ of the x-ray
image. Then

D =
∫
x∈s

d(x, s′)2dx +
∫
x∈s′

d(x, s)2dx.

In order to efficiently evaluate this distance, the distance
map of both the model and the x-ray contours are computed.

Our approach: However, considering the full edge-
maps failed to produce acceptable results, due to to the fact
many contours have no well-defined corresponding coun-
terpart (see Fig. 3). Hence we propose to consider the sil-
houettes of the objects instead of the full edge-maps s and
s′ (Fig. 4), which alleviates the problems mentioned.

4. Optimization

The distance function D is non-linear and generally ex-
hibits many local minima. Thus, we use a gradient-descent
evolution for the minimization of D: ẋ(t) = −∇D(x)
with some initial value x(0) = (b0, T0,K0). We replace
the gradient ∇D by a more suitable search direction, which
is computed via a method that evaluates the distance mea-
sure at the bounds of a large interval, hence avoiding the
solution from being stuck in local minima. In addition, a
multi-resolution approach is adopted by performing the reg-
istration in a data pyramid: the silhouettes are considered at
different resolutions during the course of the optimization.
This also speeds up the computation time considerably [7].

5. Experiments

For validation of the proposed method 23 CT data sets
of the abdomen without bone defects were used (resolution
1 × 1 × 5 mm). For all data sets manual segmentations of
the pelvic bone were available as a gold standard for quanti-
tative evaluation. The statistical shape model was generated
from triangulated surfaces reconstructed from the manual
segmentations [4].
The goal of this evaluation is to examine the accuracy
achievable with the proposed method. The main ingredi-
ents of this method to be tested are the statistical shape
model and the similarity measure. Therefore we assume
that the camera calibration K and the linear transformation
T is known and need not be optimized. For evaluation pur-
poses these parameters are known from the generation of
the simulated x-ray images. In fact these assumptions often



Test Mean [mm] Median [mm] Max [mm]

LI (CO) 1, 5 ± 0, 5 1, 2 ± 0, 3 8, 8 ± 3, 3

LI (CO-SA) 1, 3 ± 0, 5 1, 1 ± 0, 5 7, 9 ± 2, 6

LO (CO) 2, 6 ± 0, 4 2, 1 ± 0, 3 17, 6 ± 6, 5

LO (CO-SA) 2, 4 ± 0, 4 2, 0 ± 0, 3 14, 9 ± 3, 1

SO 2, 0 ± 0, 2 1, 6 ± 0, 2 13, 3 ± 2, 6

Table 1. Experimental results (mean values
and standard deviations across 23 data sets)

are met in real world: in conventional surgical planning cal-
ibrated x-ray images can be generated under standardized
acquisition conditions [9].
All experiments were conducted for one x-ray image (coro-
nal: CO) and two x-ray images (CO plus sagittal: CO-SA).
The error was measured by computing the symmetric mean
surface distances between optimization result and gold stan-
dard. Three different experiments were performed:
(a) Leave-All-In Test (LI): As a test of the similarity measure
and the optimization strategy to capture the true 3D-shape,
the reconstruction was carried out with a statistical shape
model that contained the shape to be reconstructed. The er-
ror should ideally reduce to zero.
(b) Leave-One-Out Test (LO): The shape to be reconstructed
was removed from the shape model. This represents the
“real-world” situation.
(c) Surface-Optimization (SO): As a reference value for the
leave-one-out test the shape model was directly matched to
the gold standard surfaces in leave-one-out test, where the
surface distance between the two shapes was directly min-
imized [4]. This yields the optimal result to be achieved
with a given statistical shape model in the Leave-One-Out
Test (b). The results are summarized in Table 1.

6. Discussion

In this work a new method for the reconstruction of un-
known 3D-shapes from x-ray images was presented. The
method was validated based on synthetic x-ray data (from
pelvic CT) with known camera calibration. The mean val-
ues of the measured errors even for a single projection im-
age (coronal) were up to a few millimeters within a range
where one can expect to obtain a sufficient estimate of the
3D-geometry with respect to the application of computing
load conditions for biomechanical studies [3]. This shall
be validated on clinical data in the future. For a complete
analysis of the loads occurring in the context of artificial
hip joint replacements the method shall be extended to in-
clude the femur in a next step. The leave-one-out test shows
that the largest portion of the error stems from the incom-

pleteness of the statistical model. Hence the model shall be
enlarged by more training data sets in the future. For the
clinical application of the method it must be examined to
what extent the method can cope with occlusions, artefacts
in the x-ray image or pathological situations, e.g. such as
degenerative changes of the pelvic bone (adjacent image).

To this end it must be investigated if
the method yields sufficient results in
cases of incomplete silhouette infor-
mation. A potential increase in ac-
curacy consists in incorporating fur-
ther information from the x-ray data
and the shape model into the similar-

ity measure for the registration. Hence future work shall
the attempt to combine silhouette information with modi-
fied thickness images into the registration process.
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